
Journal of Global Optimization 20: 159–172, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

159

Progress in the Solving of a Circuit Design Problem

LAURENT GRANVILLIERS and FRÉDÉRIC BENHAMOU
IRIN, Université de Nantes, B.P. 92208, F-44322 Nantes Cedex 3, France (e-mail:
granvilliers,benhamou@irin.univ-nantes.fr)

(Received 8 March 2000; accepted in revised form 4 February 2001)

Abstract. This paper describes a new global branch-and-prune algorithm dedicated to the solving
of nonlinear systems. The pruning technique combines a multidimensional interval Newton method
with HC4, a state of the art constraint satisfaction algorithm recently proposed by the authors. From
an algorithmic point of view, the main contributions of this paper are the design of a fine-grained
interaction between both algorithms which avoids some unnecessary computation and the description
of HC4 in terms of a chain rule for constraint projections. Our algorithm is experimentally com-
pared, on a particular circuit design problem proposed by Ebers and Moll in 1954, with two global
methods proposed in the last ten years by Ratschek and Rokne and by Puget and Van Hentenryck.
This comparison shows an improvement factor of five with respect to the fastest of these previous
implementations on the same machine.

Key words: Constraint satisfaction, Interval analysis, Newton method, Automatic differentiation,
Circuit design.

1. Introduction and Related Work

To address soundness and completeness issues in the numerical processing of non-
linear systems, a number of methods based on interval analysis and adapted from
numerical analysis have been developed in the last thirty years. One may cite
Taylor expansions, Newton methods and Gauss-Seidel iterations. On the other
hand, in the last decade, some authors (Cleary [5], Hyvönen [10], Older [14],
Benhamou [3], Lhomme [11], Faltings [7], Van Hentenryck [17]) have shown that
constraint satisfaction techniques can be a powerful enhancement to traditional
interval methods [12, 13]. One of the most efficient solvers applying these ideas,
Numerica [18], is based on a combination of local consistency (domain pruning)
and bisection-based search. The core algorithm of Numerica is a branch-and-prune
algorithm [17]) where the pruning step combines fixed-point based domain pruning
algorithms with a multidimensional interval Newton method. For instance, this
algorithm was used in [15] to efficiently solve the circuit design problem from
Ebers and Moll [6].

In this paper, we show that the constraint satisfaction algorithm HC4 [1] imple-
ments a chain rule for constraint projections which is very similar to the chain rule
for derivatives computed in backward mode [8]. We then take advantage of this
similarity to combine automatic differentiation and domain pruning in a single al-

160 LAURENT GRANVILLIERS AND FRÉDÉRIC BENHAMOU

gorithm. Given a set of trees representing function expressions, the computation of
their interval evaluations is achieved by a bottom-up traversal. The derivatives and
constraint projections are then computed by a top-down traversal of these trees, ap-
plying elementary derivation or projection rules. Finally, a new pruning algorithm
is designed, combining HC4 with a multidimensional interval Newton method.
This algorithm has two main specific advantages. On the one hand, the interval
evaluations performed in HC4 are reused for evaluating the Jacobian. On the other
hand, possible slow convergence behaviors are avoided by replacing fixed-point
iterations with a single tree traversal, while preserving the final output properties,
and a global fixed-point is no more computed. As a result, more bisections are
performed but the pruning cost is lower.

The second contribution of this paper concerns the experimental results achieved
by this algorithm on a classical benchmark. Ebers and Moll’s circuit design prob-
lem [6] is considered as a challenging benchmark for local and global methods. In
the last years, two interval-based techniques were successfully applied: Ratschek
and Rokne’s algorithm [16] has derived the solution with a precision of four sig-
nificant digits in (approximatively) fourteen months using a network of thirty Sun
Sparc 1 workstations; Puget and Van Hentenryck’s method [15] has solved the
problem with a precision of eight significant digits in about forty minutes using a
Sun Sparc UltraII workstation. Our algorithm computes the solution with a preci-
sion of twelve significant digits in four minutes (time to check global optimality
is eight minutes) using a Sun Sparc UltraII workstation. The result comes from
the average improvement of HC4 with respect to the classical box consistency al-
gorithm for problems with single occurrences of variables in constraints (as shown
in [1]) and from the fine-grained cooperation between the implemented pruning
techniques.

The rest of the paper is organized as follows: Section 2 introduces some material
from interval arithmetic and local consistency techniques. Section 3 presents the
chain rule for constraint projections. Section 4 presents the new pruning algorithm.
Experimental results are discussed in Section 5. Directions for future research are
sketched in Section 6.

2. Preliminaries

Let R denote the set of real numbers. A floating-point interval is a connected set of
reals bounded by floating-point numbers. The notation [a, b] is used as a shorthand
for the set {x ∈ R | a � x � b}. Let I be the set of closed intervals. The width
of [a, b] is the quantity b − a rounded towards +∞. Let Hull(ρ) be the smallest
interval containing any relation ρ ⊆ R, called the hull of ρ. A relation ρ ⊆ R is
said to be interval convex if ρ ∩ I ∈ I for every I ∈ I. The same symbols are
used hereinafter to denote operations on R and I, assuming there is no possible
confusion.

PROGRESS IN THE SOLVING OF A CIRCUIT DESIGN PROBLEM 161

A term is an atomic formula built from R, a set of operations and a set of real-
valued variables. To every variable x is associated a domain X ∈ I verifying x ∈
X. Let X denote the Cartesian product of all variable domains, called a box. A
constraint is an atomic formula built from the set of terms and the set of binary
relation symbols {=,�,�}. Let ρc be the relation associated to any constraint c
(that is the set of elements verifying c under the usual interpretation of function and
relation symbols) and Var(c) the set of variables occurring in c. Two constraints are
said to be equivalent if they define the same relation.

We define now the notions of projection and cylindrification of the relation of a
constraint (respectively a restriction and an extension of the relation to another set
of dimensions).

DEFINITION 1. Let c(x, x1, . . . , xk) be a constraint. The projection of c over x
is the relation

{a ∈ R | ∃(a1, . . . , ak) ∈ R
k : (a, a1, . . . , ak) ∈ ρc ∩X}.

DEFINITION 2. Let c(x1, . . . , xk) be a constraint. The cylindrification of c over
R
n, k < n, is the relation

ρc × R× · · · × R︸ ︷︷ ︸
n−k

.

Given two constraints c(x1, . . . , xk) and c′(x1, . . . , xn), k < n, c is said to be
more general than c′ if ρc′ ⊆ (ρc × R× · · · × R).

The previously-introduced notions are illustrated by Example 1.

EXAMPLE 1. Let us consider a term x2 + y2 − 1 over the variables x and y, a
constraint x2+y2−1 � 0, and a box [0, 1.5]×[−1.5, 0]. The associated relations
are described by means of the following figure:

Figure 1.

162 LAURENT GRANVILLIERS AND FRÉDÉRIC BENHAMOU

The projection of c over x corresponds to the intersection of the disk with the x’s
axis and the box, that is [0, 1]. For instance, the cylindrification of c over R

3 is the
ternary relation {(a, b, c) ∈ R

3 | a2 + b2 − 1 � 0}.
A fresh variable is a variable of domain] −∞,+∞[that does not occur in any

constraint. Given a sub-term u occurring in a constraint c (resp. a term f) and a
fresh variable z, let c[u ← z] (resp. f [u ← z]) denote the constraint (resp. the
term) obtained from c (resp. f) by replacing u with z. The projection of c over u
is then defined as the projection of c[u ← z] over z where the domain of z is the
image of u over the variable domains. Given a term f , u a sub-term of f , and z a
fresh variable, f [u← z](a1, . . . , an, a) corresponds to the evaluation of f [u← z]
for the values a1, . . . , an of the variables of f and the value a of z; ∂fu stands for
the derivative of f with respect to u, that is (∂f [u← z]/∂z)[z← u].

A term is represented as a directed acyclic graph (DAG). A DAG G = (N,A)

is a directed graph whose set of vertices is N , whose set of arcs is A = {(u, v) |
u, v ∈ N} and such that no sequence of arcs from A is a cycle. Given a node u ∈ N ,
u+ is the set of parents of u, that is u+ = {v | ∃(v, u) ∈ A}.
EXAMPLE 2. Let us consider two terms f : x + xy − 1 and u : xy. Terms f and
f [u← z] can be represented by the following DAGs:

Figure 2.

Notations:lower case letters u, v,w denote terms and x, y, z stand for variables.
Given a term u and a set of variable domains, the corresponding upper case letter
U denotes the interval evaluation of u.

2.1. MULTIDIMENSIONAL INTERVAL NEWTON METHOD

The interval Gauss-Seidel method is an algorithm for bounding the solution set of
an interval linear system. In the case of square systems (n variables, n constraints)
of nonlinear equations F (x1, . . . , xn) = 0, the linear system is classically obtained
through a first-order Taylor expansion around the center of the variable domains.

PROGRESS IN THE SOLVING OF A CIRCUIT DESIGN PROBLEM 163

Given an interval vector X, m(X) the midpoint of X, F ′(X) an interval extension
of the Jacobian matrix of F over X, Equation (1) holds:

F (m(X))+ F ′(X)(Y −m(X)) = 0 (1)

Let V = Y −m(X) then Equation (1) becomes

F ′(X)V = −F (m(X)). (2)

Hansen has shown [9] that if F ′(X) is not diagonally dominant then it is more
efficient to perform a preconditioning step —multiplication by a matrix preserving
the solution set— transforming Equation (2) into

PF ′(X)V = −PF (m(X)). (3)

P is called a preconditioner. A standard preconditioner is defined as the inverse
of the matrix of midpoints (real numbers) of F ′(X). The resulting linear system
AV = B (Equation (3)) is then solved by applying Gauss-Seidel iterations: the
initial value of V is set to W = X − m(X). For i taking values from 1 to n, Vi
is computed by evaluating the following formula, assuming that the value of Aii is
different from 0 (otherwise Vi takes the value of Wi):

Vi =

Bi −

i−1∑
j=1

AijVj −
n∑

j=i+1

AijWj

 /Aii

The resulting variable domains are then X ∩ (V + m(X)). If an empty domain is
derived, then the initial nonlinear system has no solution, as it is guaranteed by the
fundamental theorem of interval arithmetic [12]. The whole process is commonly
called multidimensional interval Newton method.

3. Simultaneous Lazy Evaluation of Partial Derivatives and Constraint
Projections

Domain pruning using a multidimensional Newton method combined with the
constraint satisfaction algorithm HC4 [1] requires the computation of both partial
derivatives [8] and constraint projections. We remark that partial derivatives (com-
puted in backward mode) and constraint projections (by retro-propagation) can
be simultaneously evaluated by performing two traversals of the tree-structured
representation of functions. Intuitively, a bottom-up traversal evaluates (over I)
the ranges of functions for the current variable domains; then, a top-down tra-
versal performs elementary derivation or projection operations. This idea enables a
fine-grained cooperation between both algorithms, through the sharing of interval
evaluation of terms.

Without loss of generality, we may consider a constraint c : f �� 0 where
�� ∈ {=,�,�}. As shown in [8], the computation of partial derivatives ∂fu of f is

164 LAURENT GRANVILLIERS AND FRÉDÉRIC BENHAMOU

based on the following chain rule:

∂fu =
∑
v∈u+

∂fv ∂
v
u

In the same spirit, we propose to define the following chain rule for computing the
partial projections πu(c) of c, where zv is a fresh variable:

πu(c) ⊆
⋂
v∈u+

πu(v = zv)

The key point is that the conjunction of constraints c[v ← zv] ∧ v = zv, where zv
is a fresh variable, is equivalent to c (modulo a cylindrification over Var(c)∪ {zv}).
It follows that v = zv is more general than c. Thus, an outer approximation of the
projection of c over u can be computed by projecting the new constraint v = zv
over u. Doing so for each parent v of u, a tight approximation of πu(c) can be
obtained as the intersection of all projections πu(v = zv). Example 3 illustrates
this idea:

EXAMPLE 3. Let c : x2 = f (y) be a constraint with x ∈ X and f (y) ∈ I , and
let z be a fresh variable. Constraint c can be decomposed into z = f (y)∧ x2 = z.
We have πx(c) ⊆ πx(x

2 = z) since I is necessary included in the domain of z, in
other words:

{a ∈ X | ∃b ∈ I : a2 = b} ⊆ {a ∈ X | ∃b ∈ [−∞,+∞] : a2 = b}
We have the following proposition:

PROPOSITION 1. The chain rule for projections is correct.
Proof. Let us consider a fresh variable zv and the conjunction of constraints

defined by c[v← zv]∧v = zv. This conjunction is considered as a single constraint
c′ whose relation is the intersection of both relations associated with c[v← zv] and
v = zv and cylindrified over Var(c) ∪ {zv}. Since the domain of zv is exactly the
domain of v constrained by c, then c′ is equivalent to c (more formally, we must
consider the projection of c′ over Var(c)), that is ρc = ρc[v←zv] ∩ ρv=zv . Then, we
have

πu(c[v← zv] ∧ v = zv) = πu(c).

Since πu(c[v ← zv] ∧ v = zv) ⊆ πu(c[v ← zv]) ∩ πu(v = zv) (the projection
of an intersection is included in the intersection of the projections) and πu(c[v ←
zv]) ∩ πu(v = zv) ⊆ πu(v = zv), it follows that πu(c) ⊆ πu(v = zv). Finally,
πu(c) is included in the intersection of the projections πu(v = zv) associated with
all parents v of u, that completes the proof. �
Let us remark that the proof of Proposition 1 only requires the domain of zv to be a
superset of πv(c) (the domain of v constrained by c). This property is weaker than
the condition of the domain of a fresh variable to be the set of reals, and will be
implemented in the algorithm described thereafter.

PROGRESS IN THE SOLVING OF A CIRCUIT DESIGN PROBLEM 165

Table 1. Backward evaluation of partial derivatives and constraint projections

PROPOSITION 2. For any constraint c containing only single occurrences of
variables, the chain rule for projections can be replaced with an equality, that
is:

πu(c) =
⋂
v∈u+

πu(v = zv)

Proof. In the proof of Proposition 1, the inclusion πu(c) ⊆ πu(v = zv) is
replaced with an equality since u does not appear in c[v ← zv] (u is only a sub-
term of v which is replaced with zv). Furthermore, u+ is reduced to one element
for any operation or variable node u in c (only some constants may be shared in
the DAG), and then there is only one projection πu(v = zv) to consider in the
intersection. �

The algorithmic process is detailed now. The interval evaluation of every sub-
term u of f is a superset of the image of u, which is guaranteed by the fundamental
theorem of interval arithmetic [12]. The first stage then consists in a bottom-up
traversal of f for computing an outer approximation of the range of every of its
sub-term; the range of a term is obtained by applying the corresponding interval
operation over the ranges of its sub-terms. The second stage sets either the partial
derivative ∂ff to 1 or the projection πf (c), which is obtained from the interpretation
of relation symbols over I, as follows:

c : f = 0 πf (c) = [0, 0]
c : f � 0 πf (c) = [−∞, 0]
c : f � 0 πf (c) = [0,+∞]

Finally, the retro-propagation algorithm operates a top-down traversal of f imple-
menting the chain rules. Table 1 illustrates an elementary operation at one node
of f containing an operation symbol ♦. Let us describe the projection operation:
the projection πu♦v(c) results from the intersection of every projection (πu♦v(c))w
already obtained at a parent node w. The contribution of this node to πu(c) (resp.
πv(c)) is then πu(u♦v = z) (resp. πv(u♦v = z)) where z ranges over πu♦v(c).

The projections of u♦v = z (resp. derivatives of u♦v) are computed by evaluat-
ing the inverse operations of ♦ (resp. elementary derivation rule). The correctness

166 LAURENT GRANVILLIERS AND FRÉDÉRIC BENHAMOU

of inverse operations is proved in [5]. Some of those operations are detailed now:

∂u+vu = 1 πu(u+ v = z) = Z − V
∂u+vv = 1 πv(u+ v = z) = Z − U
∂u−vu = 1 πu(u− v = z) = Z + V
∂u−vv = −1 πv(u− v = z) = U − Z
∂

log(u)
u = 1/U πu(log(u) = z) = exp(Z)
∂

exp(u)
u = exp(U) πu(exp(u) = z) = log(Z)

The final interesting results are located at variable nodes x, namely reliable
approximations for ∂fx and for πx(c). Partial derivatives are summed up while
projections are intersected. Given x ∈ X, the projection of c over x is computed
as:

πx(c) = Hull([
⋂
v∈x+

πx(v = z) ∩X])

Since πx(v = z) can be a union of intervals (given non interval convex operations),
the hull of the intersection permits to restrict a domain to be an interval. If the new
domain of x is empty then this constraint has no solution in the current variable
domains. To sum up, this algorithm computes a tighter evaluation for the domain
of x after a filtering through constraint c (see Example 4).

EXAMPLE 4. Let c : 2x = y − 1 be a constraint given x ∈ [1, 8] and y ∈
[−2, 5]. Table 2 presents the interval evaluation and retro-propagation processes
in Term f : 2x− (y−1). The computed approximations for the projections (before
intersection with current domains) are πx(c) = [−1.5, 2] and πy(c) = [3, 17]. The
new domains are then [1, 2] = [1, 8] ∩ πx(c) for x and [3, 5] = [−2, 5] ∩ πy(c)
for y.

Retro-propagation at node× is detailed now: the projection over x of 2×x = z

is computed, where z is a fresh variable ranging over [−3, 4] and x ∈ [1, 8].
Constraint 2× x = z is inverted (a symbolic view of this process is the generation
of a new constraint x = z/2) and then πx(c) = [1, 8] ∩ ([−3, 4]/2) = [1, 2].

Let us remark that the projections of a constraint containing only single oc-
currences of variables are exactly computed by retro-propagation (modulo round-
ing errors). The reasons are twofold: the projection rule computes an equality in
such a case, and the elementary projection operations are exactly implemented
since interval evaluation computes the exact ranges of all terms of c (theorem
from Moore [12]). As a consequence, only one retro-propagation process permits
the computation of all projections, i.e. to reach the fixed-point of the algorithm
(idempotence property).

For efficiency reasons, interval evaluation of terms can be done during the
backward process whenever it is needed (lazy evaluation), as is done by the al-
gorithm computing derivatives in forward mode. More precisely, given the term

PROGRESS IN THE SOLVING OF A CIRCUIT DESIGN PROBLEM 167

Table 2. Computation of constraint projections

f : u♦v considered during retro-propagation on f , the interval evaluation U of u
is computed if the three following conditions are verified:
1. Term v contains some variables;
2. Term u contains some operations;
3. U has not been already computed.

Condition 1 means that πv(c) has to be computed. The codes for elementary pro-
jection operations suggest that the value U is required (Conditions 2 and 3). Condi-
tions 1 and 2 can be implemented setting one flag at each node of constraint terms.
Condition 3 is dynamically evaluated only using one flag during the backward
traversal of each term.

The efficiency of lazy evaluation intrinsically depends on the number of variable
occurrences in the constraint and their locations in terms. Example 5 illustrates the
case where a lazy evaluation is more efficient.

EXAMPLE 5. Let c : (x + 1)3 − 8 = 0 be a constraint. Retro-propagation suc-
cessively operates the projection over zi of the following constraints: z1 − 8 = 0,
z3

2 = 8, z3 + 1 = 2. We remark that the interval evaluations of terms of c are not
required (see above-mentioned conditions), since all right sub-terms are variable-
free. A lazy evaluation then prevents unnecessary computation (here, this is one
evaluation of the plus/minus/power operations).

4. The Branch-and-Prune Algorithm

The chain rule for projections is implemented by Algorithm HC4. It is combined
with the Gauss-Seidel method processing a linear system obtained from the non-
linear initial system through a first-order Taylor expansion. The main idea is to
first apply HC4 on the original system since the natural interval form – interval
evaluation of the original constraint expressions – is efficient for large domains.
The Taylor interval form is then generated and processed by Gauss-Seidel.

Table 3 presents the new pruning algorithm. HC4 is enforced over the set of ini-
tial constraints {c1, . . . , cm}, implementing a quasi fixed-point strategy. Algorithm

168 LAURENT GRANVILLIERS AND FRÉDÉRIC BENHAMOU

Table 3. The pruning algorithm

Prune({c1, . . . , cm}; X = X1 × · · · ×Xn) : box
begin

% HC4 algorithm
Queue := {c1, . . . , cm}
while Queue �= ∅ and X �= ∅ do
c := first element of Queue
X′ := HC4revise(c,X) % computation of the chain rule for projections
if IsReducedEnough(X′,X) then

Queue := Queue ∪ {ci | ∃xj ∈ Var(ci) : X′j �= Xj } % propagation

X := X′
else

Queue := Queue \ {c}
endif

endwhile

% Gauss-Seidel method
if X �= ∅ then
S := square system of equations obtained from {c1, . . . , cm}
S′ := linear system from S through Taylor expansion and preconditioning

% interval evaluations of terms from HC4 are reused for computing
% the Jacobian

X′ := Gauss-Seidel(S′,X)
X := X ∩ (X′ +m(X))

endif
return X

end

HC4revise applies the chain rule over one constraint c from the queue. If the do-
mains have been contracted enough, all constraints containing a variable whose
domain has been modified (condition X′j �= Xj) are added in that queue. Other-
wise, c is removed from the queue, i.e. the domains are a quasi fixed-point with
respect to c. HC4 stops if the queue or the domains become empty. The Gauss-
Seidel method is then enforced over the generated linear system. Let us remark
that the Jacobian is efficiently computed since interval evaluations of terms are
shared with HC4.

PROPOSITION 3. For every box X, the new box resulting from the call Prune
({c1, . . . , cm},X) is included in X and contains the set of solutions of the system
(completeness property), namely ρc1 ∩ · · · ∩ ρcm ∩X.

Proof. HC4 and Gauss-Seidel were shown to be contracting and complete [1, 9]
(the solution set is preserved). Then so does their combination through intersection
of domains. �

PROGRESS IN THE SOLVING OF A CIRCUIT DESIGN PROBLEM 169

As a consequence of Proposition 3, if Prune({c1, . . . , cm},X) is empty, so is the
solution set.

Table 4. The stronger pruning algorithm

StrongPrune(C = {c1, . . . , cm}; X = X1 × · · · ×Xn; w) : box
% w ∈ R

+ is the precision of the algorithm
begin

modified := true
while modified and X �= ∅ do

X := Prune(C,X) % contraction of X by Algorithm Prune
modified := false
for i := 1 to n do % local search for the contraction of Xi

let Xi = [a, b]
I :=Xi % the new domain is computed in I
Xi := [a, a + w] ∩ I
if Prune(C,X) = ∅ then
I := I ∩ [a + w, b] % [a, a + w[is removed from Xi
modified := true

endif
Xi := [b − w, b] ∩ I
if Prune(C,X) = ∅ then
I := I ∩ [a, b − w] %]b − w, b] is removed from Xi
modified := true

endif
Xi := I

endfor
endwhile
return X

end

As in [15], Algorithm Prune is combined with a local search over the domain
of one variable (see [11] for a presentation of strong consistencies). That defines
a stronger pruning algorithm called StrongPrune and described in Table 4. The
idea is to prove the inconsistency of a small interval at one bound of one variable
domain ([a, a + w] or [b − w, b]) deriving the empty domains by Prune. In that
case, this subdomain can be removed due to the completeness property of Prune
(Proposition 3).

PROPOSITION 4. For every box X, the box computed by the call StrongPrune
({c1, . . . , cm},X) is included in X and contains the set of solutions of the system,
namely ρc1 ∩ · · · ∩ ρcm ∩X.

The completeness of Algorithm StrongPrune comes from the completeness of
Prune. The contraction property trivially holds.

Algorithm StrongPrune is embedded in a branch-and-prune algorithm split-
ting the domains if the desired precision has not been reached and reinvoking

170 LAURENT GRANVILLIERS AND FRÉDÉRIC BENHAMOU

StrongPrune. The result is a set of interval vectors —variable domains— such
that the union of all corresponding Cartesian products contains the solutions of
the nonlinear system.

5. The Circuit Design Problem

The circuit design problem from Ebers and Moll is described by the following
nonlinear system:

(1− x1x2)x3[exp(x5(g1k − g3kx710−3 − g5kx810−3))− 1]
−g5k + g4kx2 = 0 (1 � k � 4)

(1− x1x2)x4[exp(x6(g1k − g2k − g3kx710−3 + g4kx910−3))− 1]
−g5kx1 + g4k = 0 (1 � k � 4)

x1x3 − x2x4 = 0
xk ∈ [0, 10] (1 � k � 9)

The constants gik are given by the following matrix:

0.4850 0.7520 0.8690 0.9820
0.3690 1.2540 0.7030 1.4550
5.2095 10.0677 22.9274 20.2153

23.3037 101.7790 111.4610 191.2670
28.5132 111.8467 134.3884 211.4823

The problem is to prove that the box has exactly one solution of the equations,
which shall be computed as precise as possible.

The branch-and-prune algorithm has been applied on this problem. A domain is
bisected if its width is greater than 10−12. Parameter w of Algorithm StrongPrune
is set to 0.005. Function IsReducedEnough of Algorithm Prune succeeds if the
improvement of the width of domains is more than 10%. The result is a single box,
proved to contain a unique solution (see [15] for more details):

x1 = 0.899999952617 + [−3.331e−16, +3.331e−16]
x2 = 0.449987471982 + [−3.308e−14, +3.314e−14]
x3 = 1.00000648247 + [−8.304e−14, +8.304e−14]
x4 = 2.00006854162 + [−9.059e−14, +9.104e−14]
x5 = 7.99997144051 + [−1.572e−13, +1.572e−13]
x6 = 7.99969268422 + [−2.700e−13, +2.709e−13]
x7 = 5.00003127593 + [−1.252e−13, +1.261e−13]
x8 = 0.999987723457 + [−1.421e−14, +1.432e−14]
x9 = 2.00005248349 + [−6.484e−14, +6.528e−14]

The whole process is 444s long on a Sun Sparc UltraII/166 MHz and requires
81 bisections; the solution is computed after 220s. Puget and Van Hentenryck’
method performs 118 bisections to derive the solution with a precision of 10−8 and

PROGRESS IN THE SOLVING OF A CIRCUIT DESIGN PROBLEM 171

takes 2360s, what is about five times slower than our algorithm. The improvement
in time results from the implementation of the chain rule for projections instead of
box consistency, the cooperation with the multidimensional Newton method, and
the stopping criterion of domain pruning (no fixed-point is computed). The im-
provement in bisections (that corresponds to a best precision of pruning) probably
comes from the use of different values of parameter w. Let us finally remark that
the chain rule for projections is replaced with an equality since all variables occur
once in each constraint, and then is optimal for this problem. In other words, HC4
is here faster than and as precise as the classical algorithm for box consistency.

6. Conclusion

This paper proposes to modify Puget and Van Hentenryck’ constraint satisfaction
algorithm [15] by replacing box consistency with hull consistency computed with
algorithm HC4 [1]. HC4 is shown to implement a chain rule for constraint pro-
jections, and to be idempotent for constraints composed of single occurrences of
variables. A precise solution for the circuit design problem from Ebers and Moll [6]
is then efficiently computed.

An interesting direction for future research is the transformation of the original
problem into a polynomial one, introducing new variables for terms containing
the exponential operation, or generating a Taylor expansion of the exponential
function [4]. The polynomial problem could be simplified, using Gröbner bases
computations, and then solved by interval techniques [2].

Notes
1Each coefficient (ij) of the matrix F ′(X) is a superset of the range of the partial derivative ∂fixj
over X.
2Every constraint g �� h can be transformed beforehand into g − h �� 0.
3That corresponds in [15] to the computation of bound consistency.

Acknowledgements

The research exposed here was supported in part by the project 98/06 supported by
the French/Russian A.M. Liapunov Institute.

References

1. Benhamou, F., Goualard, F., Granvilliers, L. and Puget, J.-F. (1999), Revising Hull and Box
Consistency. In Proc. International Conference on Logic Programming, Las Cruces, USA. The
MIT Press.

2. Benhamou, F. and Granvilliers, L. (1997), Automatic Generation of Numerical Redundancies
for Non-Linear Constraint Solving. Reliab. Comput. 3(3): 335–344.

3. Benhamou, F. and Older, W. J. (1997), Applying Interval Arithmetic to Real, Integer and
Boolean Constraints. J. Logic Programming 32(1): 1–24.

172 LAURENT GRANVILLIERS AND FRÉDÉRIC BENHAMOU

4. Berz, M. and Hoffstätter, G. (1998), Computation and Application of Taylor Polynomials with
Interval Remainder Bounds. Reliab. Comput. 4: 83–97.

5. Cleary, J. G. (1987), Logical Arithmetic. Future Computing Systems 2(2): 125–149.
6. Ebers, J. J. and Moll, J. L. (1954), Large-Scale Behaviour of Junction Transistors. In IEE. Proc.,

volume 42, pages 1761–1772.
7. Faltings, B. (1994), Arc Consistency for Continuous Variables. Artificial Intelligence 65(2):

363–376.
8. Griewank, A. (1989), On automatic differentiation. In Mathematical Programming: Recent

Developments and Applications, pages 83–108.
9. Hansen, E. R. (1992), Global Optimization using Interval Analysis. Marcel Dekker.

10. Hyvönen, E. (1992), Constraint Reasoning based on Interval Arithmetic. The Tolerance
Propagation Approach. Artificial Intelligence 58: 71–112.

11. Lhomme, O. (1993), Consistency Techniques for Numeric CSPs. In Proc. International Joint
Conference of Artificial Intelligence, Chambéry, France. Morgan Kaufmann.

12. Moore, R. E. (1966), Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ.
13. Neumaier, A. (1990), Interval Methods for Systems of Equations. Cambridge University Press.
14. Older, W. and Vellino, A. (1993), Constraint Arithmetic on Real Intervals. In F. Benhamou and

A. Colmerauer (eds.), Constraint Logic Programming: Selected Research. MIT Press.
15. Puget, J.-F. and Van Hentenryck, P. (1998), A Constraint Satisfaction Approach to a Circuit

Design Problem. J. Global Optim. 13(1): 75–93.
16. Ratschek, H. and Rokne, J. (1993), Experiments using Interval Analysis for Solving a Circuit

Design Problem. J. Global Optim. 3: 501–518.
17. Van Hentenryck, P., McAllester, D. and Kapur, D. (1997), Solving Polynomial Systems Using

a Branch and Prune Approach. SIAM J. Numer. Anal. 34(2): 797–827.
18. Van Hentenryck, P., Michel, L. and Deville, Y. (1997), Numerica: a Modeling Language for

Global Optimization. MIT Press.

